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Since a given trial structure of a crystal is charac- 
terized by fixed values of a I and (IArl), for the 
evaluation of R(F) from (12), al and (IArl) are to be 
treated as fixed quantities. The integral on the right- 
hand side of (12) is to be evaluated numerically. For 
this the values of R(y) are needed at discrete values of 
S. This can in turn be obtained by first calculating the 
relevant values of D from (16) and then by 
interpolation. 

The overall value of the conventional R index based 
on intensities is defined by 

k ( I )  Y ~ N -  I~ 
= (20) 

By following a procedure similar to that employed for 
R(F) and using the known result that (y~) = 1 it can 
be shown that 

.-,~ m a x  

f f f ( S ) S 2 R ( z ) d S  
R ( I ) -  0 , (21) 

sm,x 
f f 2 ( S ) S 2 d S  
o 

where 

R(z)=(Ly  2-',.,e'~2''e2t)= ~ - ° ~  l l - v j  ] 
0 o 

× P ,  (22) 
1--U ' 1--V ( l - - u )  2(1-12)2" 

The procedure for the evaluation of/~ (I) for any given 
trial structure is similar to that discussed earlier for 
/~(F). 

3. Discussion of the theoretical results 

The overall values of R(F) and R(I)  as functions of Ol 2 
and (IArl) (in A) were evaluated by the procedure 
discussed in § 2 by taking f in (12) and (21) to be the 
scattering factor of the C atom. Sma X in (12) and (21) is 
taken to be 0.6485 which is the maximum value of 
(sin 0)/2 corresponding to Cu K ,  radiation. The results 
thus obtained for/~(F)  and/~(I)  are given in Tables 1 
and 2 respectively for the centrosymmetric case, and in 
Tables 3 and 4 for the non-centrosymmetric case. Since 
a major portion of an organic or a biomolecule is 
composed of C atoms and since the scattering powers 
of O and N are comparable with C, these results could 
be expected to hold good for organic crystal structures. 
A study of these tables shows that R(I) would be 
preferable to /~(F) particularly in the conventional 
refinement stage. 

MNP thanks the University Grants Commission, 
New Delhi, India for financial assistance. 
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Abstract 

First-order TDS calculations have been made for 
naphthalene at 100 K to judge the suitability of 
different models for calculating TDS corrections used 

0567-7394/79/040675-10501.00 

in practice. It appears that a long-wave model which 
takes account of the non-linearity of the frequency 
dispersion, gives about the same corrections for 
structural parameters as the lattice dynamical model for 
rigid body molecules and harmonic vibrations. Long- 
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wave models with linear frequency dispersion give an 
overcorrection of the errors. For second-order TDS no 
explicit comparison of the models has been possible, but 
rough estimates show that the comparison made for 
first-order TDS is also valid in good approximation for 
the total TDS. 

1. Introduction 

As has been noticed by different authors, e.g. Willis 
(1969; see his Fig. 1), the contribution of thermal 
diffuse scattering (TDS) to integrated reflection inten- 
sities for X-ray and neutron diffraction, is not 
eliminated by the usual background correction. This is 
due to the fact that the TDS has a maximum below the 
Bragg peak. The TDS contribution to the intensity of a 
reflection H is given by 

/ *  

I(TDS,H) = | I(TDS,S) dS 
i d  

Vp(H)  

Vp(H) f I(TDS,S) dS. (1) 

where Vp(H) and Vb(H) are the volumes in reciprocal 
space seen by the counter during the peak and back- 
ground scan respectively (scanned volumes; Helmholdt 
& Vos, 1977), and S is a vector in reciprocal space. 
Several authors have calculated TDS corrections, 
I(TDS,H), for reflection intensities. However, in 
general, for crystals with low symmetry, TDS correc- 
tions are determined from elastic constants and are thus 
based on a long-wave model with linear frequency 
dispersion for the acoustic modes (LW model). In the 
present paper, for a molecular crystal, naphthalene at 
100 K, a lattice dynamical model is used to eliminate 
the TDS errors. To facilitate the computations the 
model assumes the molecules to be rigid and the 
thermal vibrations to be harmonic. A justification of the 
rigid-body assumption is that the lower lying phonon 
dispersion branches which mainly determine the TDS, 
are hardly affected by the non-rigidity of the molecules 
(Pawley & Cyvin, 1970). The lattice dynamical results 
will be compared with those of approximate methods. 
For this comparative study we have not used scanned 
volumes Vp(H) and Vb(H) as encountered in practice, 
but for all reflections the volumes Vp and V b, respec- 
tively, have been taken as the same (§ 7.1). 

2. The lattice dynamical model 

The lattice dynamical formulae (Cochran, 1963; 
Hoppe, 1964; Willis, 1969; Pawley, 1972; Maradudin, 
Montroll & Weiss, 1963; Born & Huang, 1968) are 
briefly summarized below. 

For r rigid bodies m, m = 1 - r, in the primitive unit- 
cell, there are 6r phonon dispersion branches o. The 
dynamical behaviour of the crystal may be given by a 
sum of travelling waves for the translational and libra- 
tional motions; 

qj(ok;lmt) = qj(okm) exp i[2ztk.r(Im) -- to(ok) t], (2) 

qj(okm), j = 1-3, stands for the translational compo- 
nents tj(okm) or the librational components 2~(trkm) of 
mode (ok); k = wave vector, to(ok) = angular 
frequency, l = unit-cell index, r(lm) = position of 
gravity centre of m in cell l, t = time. For each wave 
vector k the angular frequencies to(ok) and the mass- 
adjusted amplitude vectors t°(okm) and ~,°(okm) are 
obtained from the eigenvalues to2(ok) and the eigen- 
vectors U°(ok)of  the (6r × 6r)-dimensional dynamical 
matrix D(k). For the mass adjustment of t~(okm), the 
mass Mjj(rn) = M(m) is used, and for that of 2°(okm) 
the inertial moment Iij(m). The non-mass-adjusted 
components are given by 

tj(okrn) = M~V2(m) t~(okm), (3a) 

2j (okm)  = I-ff/2(m) 2~(okm). (3b) 

In general the components tj(trkm) and 2j(okm) are 
complex. For naphthalene where the molecules lie at 
inversion centres, the translational and librational 
components have a phase difference of rr/2 (Pawley, 
1967) and for each of the modes the translational com- 
ponents can be assumed to be purely real, and the libra- 
tional components to be purely imaginary. The different 
modes are dynamically independent (James, 1965, p. 
198). 

The scaled amplitudes P and k s are obtained from t 
and 2~ by multiplication with the scale factor 

C(ok) = [E(ok)/Nto2(ok)] v2, (4) 

where E(ok) is the energy of the mode ok and N the 
number of primitive cells considered. As quantum 
effects can be neglected for the present calculations 
(Helmholdt & Vos, 1977), the expression for the energy 
is 

E(ok) = k n T, (5) 

with k s the Boltzmann constant and T the absolute 
temperature. 

TDS intensity 

The first-order TDS intensity I~(TDS; S = H -- k) 
per unit reciprocal volume at S = H -- k is given by 

I~(TDS; S = H -- k) 

k B T IF~(Sek) 12, (6) = 47t2 $2 N ~--~ to 2(ok-------- ~ 
O 
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with S = 2 sin 0/2; IF~(Sok)l is the structure factor 
amplitude for first-order TDS and reads 

I 
IFm(Sok)l = I~ f ( S m a )  ~.p(ok;ma) 

I m a  I 
× exp 27r/[H.r(m) + S.r(ma)l I, (7) 

ma = index for atoms a of rigid body m, f ( S , m a )  = 
scattering factor of atom ma, including the temperature 
factor, r(m) = position vector of gravity centre of m, 
r(ma) = position vector of atom ma relative to r(m); 
r(m) + r(ma) gives the position of atom ma in the unit 
cell; ~ = unit vector in direction S; p(ma) is the (non- 
scaled) displacement vector of atom ma. For the rigid 
body model this displacement reads 

p(trk;ma) = t(okm) + J~(okm) × r(ma). (8) 

The second-order TDS intensity per unit (eciprocal 
volume at S = H -- k with k = k' + k" is called I2(TDS; 
S = H -- k) and is given by 

12(TDS; S = H -- k) 
(k B T) 2 

=87t4NS4y oZ o~--i/ o92(o.,k,)o92(o.,,k,, ) 
k t  ' . 

dk' 
× 'Fz(So' k' o" k")l z - -  (9) U* ' 

with integration over the whole Brillouin zone (BZ); 
v* = [V(cell)] -! and 

kLW(aa km) = 0, (13b) 

tLW(Oa ira) = t(aak"), (13c) 

with k = k/k,  v ( a ~  = sound velocity for direction k,. 
The long-wave translational amplitude vectors are real 
and equal for the different molecules m, the frequency 
dispersion is linear and velocities and t Lw vectors 
depend only on the direction and not on the magnitude 
of k. All rigid bodies adjust themselves by translational 
motion only to the waves (in non-scaled formulation) 

tLW(oa k;lmt) = tLW (Oa k) exp i[27rk, r(lm) -- o9 (ok) t]. 

(14) 

From (13a), (6) and (9) we see that the TDS peak for 
S-+ H or for k-+ 0 is caused predominantly by the 
acoustic modes with low frequency. Therefore, often 
long-wave TDS models are applied which are based on 
the assumption that the acoustic long-wave character 
for k--, 0 also holds for larger values of k. We have 
used two types of models. 

I. The long-wave model with following rigid bodies 
(LWF model). The above situation with formulae 
(13a), (13c) and (14) holds. The first-order TDS is 
given by 

ILWr(TDS, S = H -- k) 

= 47r2NS2kn  T ~ f ( S m a )  exp 2zri[H.r(m) 
m a  

Fz(So'  k' o" k") = ~ f ( S m a )  ~.p(a'  k';ma) 
m a  

× P,. p(o" k";ma) 

× exp 2zci[H.r(m) + S.r(ma)]. 

(to) 

The intensities I i(TDS,H) and I2(TDS,H) obtained 
by integration of (6) and (9), respectively, over 
reciprocal space according to (1), can be compared 
with the Bragg intensity 

I(Bragg,H) = Nv*IFB(H)I z, (1 t) 

where F n (H) is the usual structure factor 

F n ( H ) =  ~ f ( S m a ) e x p  2~ziH.[r(m) + r(ma)]. (12) 
m a  

3. Long-wave models  

Among the 6r branches there are three acoustic 
branches a a, tra = 1-3, which for k --, 0, and thus for 
long waves, obey the relations 

w(ok) = 2nv (ok") k, (13a) 

+ S.r(ma)l 2 ~, {[~.tew(oafo]/2zw(oa[)k}2.  (15) 
Oa 

II. The long-wave model with following atoms 
(LWA model). In this case each individual atom is 
considered as a rigid body which adjusts itself by 
translational motion to the acoustic waves. In the TDS 
formulae [H.r(m) + S. r(ma)] is replaced by [H . r (m)+ 
H.r(ma)] so that we obtain from (15), (13a), (6), (7), 
(9), (10) and (12) 

ILWA (TDS, S = H -  k) 

= 47r z N S  2 k n TIFn(H)l z • {[~.tLw(aak)l/og(aak)}2 
Oa 

and 

ILWA (TDS, S = H -  k) 

= 87r4NS41FB(H)I 2 

( k n T) 2 

× ~ ,  o92(~k,) 2 ,, , o9 (o" a k") 

dk' x [~. Lw -, t (oak') ~.tLW(o " k")l 2 
U* 

(16) 

(17) 
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For this model two cases have been distinguished: 
II. (A) Linear frequency dispersion according to 

(13a). The resulting model is called the LW model. The 
TDS expressions are given by (16) and (17) with (13a) 
for the frequencies. 

II. (B) Non-linear frequency dispersion. This model 
is called the LWD model. In the TDS expressions (16) 
and (17) correct values for co(o a k) are used, which can 
be derived either from experimental data or, as has been 
done in the present paper, from lattice dynamical 
calculations. 

Model II(A) has been considered as it is often applied 
in crystallographic studies (Willis, 1969; Cochran, 
1969), and model I has been compared with II(A) to 
check the difference caused by the adjustment of rigid 
bodies rather than individual atoms to the waves. 

4. Choice of potential functions 

The force constants required for the dynamical matrix 
D(k) have been calculated with the following 
assumptions: (a) the force on molecule m is the sum of 
the forces on its atoms ma; (b) the forces on the atoms 
are obtained from pair-potential functions of the 
Buckingham type, 

V(rij) = -Ar-[j 6 + B exp(-Crij), (18) 

where V(rty) gives the interaction energy between two 
atoms i and j at distance r~j. The constants A, B and C 
depend on the types of atoms considered. As the 
peaking of the TDS below the Bragg peak is directly 
connected with the wave velocity, published sets of A, B 
and C values for C . . . C ,  H . - . H  and C . . . H  inter- 
actions (Williams, 1966, 1967, 1970, 1974; Taddei, 
Bonadeo, Marzocchi & Califano, 1973; Mirskaya, 
Kozlova & Bereznitskaya, 1974) were tested on their 
ability to reproduce the velocities of elastic waves 
measured for different crystals (Kroon, 1977). In 
addition to variations in A, B and C, variations in C--H 
distances were considered. For different parameter sets, 
best agreement with measured sound velocities was 
obtained for C--H = 1.09 A. Differences between 
observed and calculated elastic wave velocities for 
different sets of A, B and C values and C--H = 1.09 A 
are given in Table 1. On the basis of this table, set (d) 
was chosen for the further TDS calculations, although 
sets (a)-(c) and set (e) seem to be nearly as good. 

5. Thermal motion 

The naphthalene molecules lie at inversion centres in 
the cell. Starting from the structure determined by 
Cruickshank (1957), rotations of 1.6, 0.3 and 1.3 ° 
respectively about the axes of inertia were applied to 
minimize the energy in the assumed potential field. The 

cell dimensions were kept constant. The minimization 
procedure is essentially the same as that described by 
Filippini, Gramaccioli, Simonetta & Suffritti (1973), 
apart from the fact that we have taken a summation 
limit of 7 A instead of 5.5 A. The resulting coordinates 
are listed in Table 2. For carbon ~t  (Aq~) 2 = 0.02 
(function of merit, defined by Filippini et al.), where Aqt 
is the change in coordinate q~, in A, relative to the 
Cruickshank structure. For the coordinates and cell 
parameters of Table 2 the T and L tensors at 300 K 
were calculated with the formulae (Scheringer, 1973b) 

Tij(m) = kn TRe [~ tt(okm) tg(akm)/to2(ok)], 

i, j =  1-3, (19a) 

Lig(m)=knTRe[~  2,(trkm)2j(akm)/o92(trk)]. (19b) 

The tensor S = 0 as the molecule lies at an inversion 
centre. The procedure for the summation over the BZ 
has been described by Kroon & Vos (1978); an evenly 
spaced grid with intervals of (1/24) a*, (1/24) b* and 
( 1/24) c* was applied. 

Comparison of the present T and L tensors with 
Pawley's (1967) values shows that 

(T.(present)) (L.(present)) 
= 1-313. = 1.313. 

( Tli(Pawley) ) ( L,(Pawley) ) 

We have ascribed the relatively low values obtained by 
Pawley to the use of an insufficiently dense summation 
grid (Gramaccioli, Simonetta & Suffritti, 1973), 
although it is surprising that for the libration the 
percentage discrepancy is as large as for the trans- 
lation. In Table 3 the present values are compared with 
those of Pawley (after multiplication by 1.313) and 
with the T and L tensors calculated by Filippini, 
Gramaccioli, Simonetta & Suffritti (1973). The three 
sets show an analogous trend. Closer inspection shows, 
however, that the Tii values of Filippini et al. (1973), 
especially that for Tll, tend to be higher than the 
present values, while their values for L ,  tend to be 
somewhat lower. There are two possible explanations 
for the observed differences. (1) The difference in 
parameter set. Set (e) of Table 1, which is the Williams 
IVa set used by Filippini et al., gives lower wave 
velocities (Kroon, 1977), and thus higher Tii values, 
than set (d). (2) The summation technique. From Table 
3 in Gramaccioli, Simonetta & Suffritti (1973), we see 
that non-convergence in their summation technique 
makes T,  too high and L ,  too low. For the present 
summation, on the other hand, we expect an under- 
estimate of 3.5% for Tt~ and of about 1% for 7'22 and 
Ta3, whereas convergence has been reached for L .  
(Kroon & Vos, 1978). 
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T a b l e  1. Tested parameter sets A, B and C for potential functions (18) ,  and differences between observed and 
calculated values for lattice frequencies and elastic wave velocities 

Given are (left) r.m.s, differences defined as {~ [p(calc) - p(exp)12/n} ~/2, and (right) average differences defined as {~ [p(calc) - 
p(exp)l }/n, n = number of parameters p; C - H  = 1.09/k. 

C . . . C  H . . . H  C . . . H  
Set* A B C A B C A B C 

(a) 602 89290 3.60 71 4000 3.74 86 6767 3.67 
(b) 440 43380 3.60 58 4000 3.74 160 13170 3.67 
(c) 437 44010 3.60 50 4000 3.74 168 13270 3.67 
(d) 535 74460 3.60 36 4000 3.74 139 9411 3.67 
(e) 568 83630 3.60 27.3 2654 3.74 125 8766 3.67 

( f )  538.7 74620 3.60 17.93 1704 3.74 96.8 7703 3.67 
(g) 512.6 71782 3.60 24.4 2171 3.74 111.8 8503 3.67 
(h) 449.3 71462 3.60 40.1 2868 3.74 134.2 5667 3.67 
(i) 421 71600 3.68 29 4900 4.29 118 18600 3.94 
( j )  566.7 78659 3.61 26.5 2260 3.74 127.6 8810 3-67 

Lattice ~equencies(cm -~) Elastic velocities(10 m/s) 

Set NF~ AN BZI38 NF AN BZ218 

(a) 10 - 7  2 - 1  14 - 1 2  37 - 2 3  30 --18 34 - 2 4  
(b) 11 2 14 10 7 - 2  37 - 1 2  26 - 8  42 - 4  
(c) 11 3 14 11 7 - 1  39 - 1 2  27 - 6  40 - 2  
(d) 9 0 7 6 7 - 3  35 - 1 8  25 - 9  29 - 9  
(e) 10 - 7  3 - 1  13 - 1 1  33 - 2 1  25 - 1 9  32 - 1 8  
( f )  14 - 1 3  8 - 6  20 - 1 9  45 - 3 7  38 - 3 4  42 - 3 2  
(g) 12 - 1 0  5 - 4  17 - 1 5  40 -31  33 - 3 0  38 - 2 6  
(h) 24 - 2 2  20 - 1 8  24 - 2 4  72 - 6 2  69 - 6 2  63 - 5 8  
(i) 18 - 1 7  11 - 1 0  24 - 2 3  56 - 4 7  48 - 4 4  47 - 3 6  
( j )  12 - 1 0  8 - 6  17 - 1 5  43 - 3 3  36 - 3 0  49 - 4 3  

1970) set A and C; * The parameter sets used are (a)--(d) Williams (1966) set l - IV;  (e) Williams (1967) set IV; ( f ) - (g )  Williams ( 
(h) Williams (1974); (i) Mirskaya et al. (1974); ( j)  Taddei et al. (1973). 

~f NF = naphthalene, AN -- anthracene, BZI38 -- benzene at 138 K. Experimental data for frequencies are from Harada & Shimanouchi 
(1966, 1967); Ito, Suzuki & Yokoyama (1968), Chantry, Gebbie, Lassier & Wyllie (1967), Bonadeo, Marzocchi, Castellucchi & Califano 
(1972). Experimental data for velocities are from Aleksandrov, Belikova, Rhyzenkov, Teslenko & Kitaigorodskii (1963), Afanas'eva, 
Aleksandrov & Kitaigorodskii (1967), Afanas'eva (1968), Teslenko (1967), Huntington, Gangoli & Mills (1969), Afanas'eva & 
Myasnikova (1970), Heseltine, Elliot & Wilson (1964). 

T a b l e  2. Crystallographic data of  naphthalene as used for the lattice dynamical calculations 
2' 4' 

' 3 ~ 5 '  
15 1 

4 2 

x y z Ut~ U22 U33 Utz Ut3 

C(1) 0.08319 0.02629 0.32404 3.052 3.061 1.907 0.241 1.330 
C(2) 0.10896 0.16574 0.21626 2.486 2.278 1.984 - 0 . 0 8 0  1.048 
C(3) 0.04404 0.10449 0-03290 1.741 1.716 1.850 0.075 0.905 
C(4) 0.06823 0.24816 -0 .08336  2.355 1.963 2.500 0.004 1.377 
C(5) 0.00768 0.18329 -0 .25743  2.926 2.765 2.418 0.332 1.659 

H(I)  0.13292 0.07717 0.46397 4.578 4.468 2.057 0.253 1.759 
H(2) 0.17812 0.32576 0.26810 3.546 2.654 2.680 - 0 . 5 9 6  1.361 
H(4) 0. 13744 0.40978 --0.03165 3.325 2.095 3.609 -0 .451  1.953 
H(5) 0.02781 0.29566 -0 .34449  4.250 3.720 3.313 0.450 2.558 

Cell parameters 
a = 8.235 A 
b = 6.003 
c = 8.658 
f l=  122.55 °* 

Space group P2 t /a  
coordinates listed are those after 

energy minimization by LA TD YN 

Uo.'s are calculated from T and L tensors 
obtained from lattice dynamical data and 
given in 10 -2/~k 2 

* For the present work by accident fl = 122.55 o has been taken instead of fl = 122 o 55' = 122.91 o 

U23 
- 0 . 0 3 8  
-0 .373  
- 0 . 0 3 9  

0.220 
0.549 

- 0 . 2 7 9  
- 0 . 9 3 7  

0.115 
1.168 
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Table 3. Comparison o f  T and L tensors obtained by 
lattice dynamical calculations at 300 K (see text) 

The tensors are given in the inertial frame defined by Cruickshank 
(1957). T o in 10 -4 A 2 and L o in 10 -l degree 2. 

T,l T22 T33 TI2 TI3 7"23 
Present work 551 527 461 20 -15 --20 
Pawley (1967) (x 1-313) 544 544 452 11 -7  -24 
Filippini et al. (1973) 600 532 478 13 -14 -28 

LH L22 L33 LI2 LI3 L23 

Present work 296 188 235 38 5 21 
Pawley (1967) (x 1.313) 287 206 226 34 8 32 
Filippini et al. (1973) 271 182 232 29 6 17 

6. Phonon dispersion curves and eigenvector 
dispersion 

For the calculation of the frequencies and eigenvectors 
the Fort ran program L A T D Y N  has been written 
(Kroon, 1977). Fig. 1 shows the phonon dispersion 
curves for the b* direction. Especially for higher k 
values, the acoustic branches do not obey (13a), as 
expected. 

To get an impression to what extent the acoustic 
character of the eigenvectors of the acoustic modes 

120  

9 0 - -  

d 6 0  

3 0  

S 

5 / 

_A / / 

2 / /  1 / / / /  . 

Iv I '~ I ' ~ /  / / ~  J 
. I  .2 .3 .4 .5 

W A V E V E C T O R  ( i n  u n t t s  b ~ )  

Fig. 1. Dispersion curves for the i0k01 direction in naphthalene 
calculated with the lattice dynamical rigid-body model. The 
dashed line illustrates the frequencies in case of linear dispersion. 
S and A indicate symmetric and antisymmetric modes respec- 
tively. 

(O a k) at k--, 0 is retained at higher k values, we have 
calculated the so-called eigenvector dispersion 

ED(% k) = Y I u°r(oa,k small) U*°(o'k)l 2 
a 

x o)2(Oak)/o)2(ak ). (20) 

For  k small, values of  typically 10 -4 ,/~-~ were taken; 
k = 0 cannot be used as a reference since the acoustic 
modes are degenerate at this point. The factor 
o)2(%k)/o)2(ok) accounts for the difference in scaling 
(4) between the modes. Fig. 2 shows for k along b* for 
each of the branches % the values E D ( o ,  k;tot) where 
tot stands for the total number of branches considered 
in the summation (20). For tot = 1 the summation is 
over o = % only, for tot = 3 over all three acoustic 
branches and for tot = 12 over all twelve branches. 
Also the average quantity 

(ED(k ;  1 2 ) ) = [ ~  co-2(% k) 

is given, in which according to the scaling (4) the 
contribution of each mode ( % k )  has been weighted 
with o)-2(% k). We see that for k = O. 2b*, the acoustic 
character is retained for 95% on average and for 
k = 0.5b* for 66%. Fig. 2 shows that at k = 0.3 lb* the 
character of the symmetric acoustic branch three is 
taken over by the lowest lying symmetric optic branch 
four, whereas the eigenvectors U°(3;ksmall )  and 
U°(3;k > 0.3 l b*) are almost orthogonal. Note further 
that for branch three ED(3k ;3)  = ED(3k;1)  as the 
symmetric and antisymmetric acoustic modes do not 
combine with each other. 

7. First-order TDS calculations 

7.1. Setup of  the calculations 

TDS intensities were calculated with the Fortran 
program TDS (Kroon, 1977). Again a division of each 

ol o2 o) ~ o5 t" 
~ k  

m. \ 3 
to " ~ - - - ~  

. . . .  mT. i/ 

. . . .  k 

Fig. 2. Eigenvector dispersion ED(x 10 2) along b* for the three 
acoustic branches. Curves are given for different tot values (see 
text) and for (ED) defined by (21). Curve S gives Iu°r(3;k 
small) U°*(4k)l 2. For k < 0.25b* the tot = 3 curves approach the 
corresponding tot = 1 curves very closely. 
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reciprocal axis into 24 intervals was used. Frequencies 
and eigenvectors were obtained with the program 
LA TDYN for 7488 k values in half the BZ [the other 
half is found by the simple relations o92(Gk) ----- o~2(a,-k) 
and U°(akm) = U°*(tr,--km)l. 

To simulate the TDS errors for data measured at 100 
K, we have taken the Cruickshank (1957) structure 
after energy minimization with T and L tensors as 
expected for 100 K. These tensors were obtained by 
dividing the T and L values of Table 3 by three. The 
corresponding U tensors and the coordinates after 
energy minimization are given in Table 2. For this 
structure in the range up to sin 0/2 = 1.2 A -l one of 
each five reflections was taken leaving 1077 indepen- 
dent reflections. The volume Vp was taken congruent 
with the reciprocal unit-ceU shape. It is centred around 
H and has edges of 0.292 (0.146 on either side) a*, b* 
and e*. The background TDS intensity was calculated 
by extending the scanned volume Vp by one grid 
interval (on either side) in the a* direction. The largest 
wave vectors considered at sin 0/2 = 1.0/k -~ are 0.045 
/k -1 (0.27b*) for the present calculations and 0-038 
A- '  for the practical conditions chosen by Helmholdt & 
Vos (1977). The present volume is thus sufficiently 
large to obtain a good estimate of TDS effects 
occurring in practical cases. 

7.2. *Influence of  the optic modes. The EX model 

On the basis of the lattice dynamical model, for a 
restricted number of reflections, I~(TDS,H) values were 
computed both with inclusion of all modes, a = 1-12, 
and with the acoustic modes, aa, only. Data for some 
reflections are listed in Table 4. For none of the 
reflections is the contribution of the optical modes 
>1.5% of the acoustical contribution. This shows that 
for the present case the neglect of optical modes, 
usually applied in the calculation of first-order TDS 
corrections, is justified. Therefore in all further cal- 
culations of first-order TDS intensities acoustic modes 
only have been considered. The result of the lattice 
dynamical calculations based on the acoustic modes are 
indicated as EX(act). 

7.3. First-order TDS profiles and a~(H) values for 
different models 

Fig. 3 shows the first-order TDS profiles along b* for 
the LW, LWF, LWD and EX models. The numbers 
indicate the positions of the reflections 0k0. In agree- 
ment with the fact that the LW and LWD thermal 
diffuse scattering is proportional to IFn(l-I)l 2 (16), the 
LW and LWD TDS intensities are zero around the 
systematically absent reflections 0k0 with k odd. For 
these reflections zero TDS intensity is also expected 
along b* for LWF as can be seen by substitution of 
Ay = ½ for the positions of the molecular centres in (15). 
For the EX model the TDS intensity is not zero around 
the systematically absent reflections, but the profile is 

so smooth that TDS errors are expected to be 
eliminated by the usual background corrections. At the 
positions of the reflections 0k0 with k even, for all 
models the TDS intensity goes to infinity. In practice no 
infinite intensity will be measured due to finite 
resolution of the experimental setup (Cochran, 1969; 
Jennings, 1970; Walker & Chipman, 1970; Scheringer, 
1973a; Stevens, 1974). 

Table 5 shows the values 

a l (H ) = I~(TDS,H)/I(Bragg,H) (22) 

for the four models and a set of randomly chosen 
reflections. We see that the aEX(H) values show a 
strong anisotropy and that for some high-order reflec- 
tions values higher than 100% are reached. Both the 
LW and LWF models overestimate the TDS errors and 
in most c a s e s  (ILWF(H) deviates more from (rEX(H) than 
aLW(H). Values which lie considerably closer to t~EX(H) 
are obtained with the LWD model. This makes it clear 

Table 4. Comparison of  I Fnl 2 and the net first-order 
TDS intensity due to acoust& and optic branches for 

some reflections distributed through reciprocal space 

h k 1 sin 0/2 :Fnl 2 l~(ac) Ill(opt ) 

1 1 --2 0.142 141-1 0"8587 0.002 
0 2 0 0.167 258.0 2.811 0.005 
1 1 3 0.265 138.0 3.741 0-001 
4 0 --5 0"307 26.18 1.111 0.006 
5 5 --6 0"559 75.41 9.645 0"011 
9 3 --4 0.606 41.33 8.470 0.010 
0 7 5 0.676 13-43 2.258 0.003 
2 5--12 0.868 5.958 1.089 0.001 
4 10 --8 0.953 0.5538 0.2025 0.002 
2 8 9 0"970 1.509 0.6116 0.002 
5 4 11 1.049 0.1454 0-0770 0.001 

10 3--18 1.071 0.6573 0.3363 0.002 
17 1 --I 1.192 0.0112 0.0150 0.000 

l LW 

_.. LWF 

i _ - _ 
LWD 

I _ _ E X  

; 

i t I 

, J': 

~- 2 3 5 6 8 9 

Fig. 3. First-order TDS intensity profiles along b* in naphthalene, 
calculated with LW, LWF, LWD and EX methods. The numbers 
give the positions of the OkO reflections. 
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Table 5. Comparison of a~(H) values calculated by the 
EX and by different approximate TDS methods for an 

h k I 

0 1 3 
4 5 -1  
2 5 3 
1 6 - 4  
6 0 - 1 0  
6 6 - 5  

12 1 - 6  
9 5 - 9  
7 1 5 
8 2 4 
7 8 - 1 0  

10 0 4 
8 9 0 
0 5 13 
3 6 - 1 4  

1 1 4  4 
17 1 - 1 1  
12 9 - 3  
013  1 
2 13 - 5  

15 7 - 1 4  
10 7 6 

1 14 - I  
313 5 

13 8 - 1 6  
4 13 - 9  

18 6 - 8  

arbitrarily chosen set of reflections 

ct~(H) is defined by (22) and given in %. 

sin 0/2 

0.2217 
0.4898 
0.5178 
0.5557 
0-5810 
0-6282 
0-7353 
0-7375 
0.7507 
0.7772 
0-8922 
0.8973 
0.9453 
0.9829 
0.9964 
1.0228 
1.0399 
1-0769 
1-0850 
1 1214 
1 1457 
1 1597 
1 1680 
1 1899 
1 1909 
1.2018 
1.2109 

103'F8, z t l~ w tlt Lwr otLWD tt~ x 

55606 1.4 1.5 1-3 1 "3 
6123 14.9 15.1 12.5 12.5 

406 12.6 13.2 I 1.1 10-7 
1000 10.9 11.0 10-8 10.3 
7167 I 1.2 11.6 9-8 10.0 

40192 22.8 22.9 19.4 19.3 
5096 62.5 64.7 45.4 44.4 
4957 34. I 34.5 27.6 27.4 

673 45.9 52.1 33.7 32.5 
138 53.3 64.1 39.0 37.1 

10.5 32.5 157-8 29.7 22.9 
110 76.6 67.1 55.5 62.7 

2252 59-9 59.4 49.0 49.0 
1288 28.7 28.5 25.7 25.9 

110 24.3 23.6 23.8 23-8 
186 94.9 95-8 69.8 69.0 
116 115.1 118.8 84.5 81.1 
62.9 94.5 94-9 73.9 76.0 
32.2 46.1 43-6 45.5 46.6 

0.651 47.7 89.1 47.1 34.7 
36.2 91.2 92.5 72.7 52.1 
34.3 100.1 103-2 76.5 73.2 
91.1 53.6 53.3 52.9 53.6 
45.4 60.2 60.1 56.2 57.0 
75.7 70.7 71-4 59.7 60.0 
18.7 52-1 54.6 51.2 51.3 
40.9 154-4 155.2 114.4 113-2 

that for naphthalene-type crystals a long-wave model 
with flexible molecules and correct to(ak) dispersion 
gives good estimates for the first-order TDS errors, and 
that neglect of eigenvector dispersion as shown in Fig. 2 
by ED(aak;3 ) does not have a large effect on a~(H). 
The noticeable influence of the non-linearity of the 
frequency dispersion arises from the fact that the 
scanned volume Vp extends to 0.3, and the back- 
ground region to about 0.4 the BZ boundary. For 
practical intensity measurements sometimes even larger 
k values are encountered in scanned reciprocal volumes 
(Helmholdt, 1975). 

and errors I2(TDS,H) for second-order TDS, has been 
incorporated, both for the lattice dynamical and the 
long-wave models. A numerical comparison of the 
different models has not been possible, however, 
because of the excessively high computing time required 
for the lattice dynamical calculations. For just one 
point in reciprocal space, the computation of I2(TDS; 
S = [] - k) took 800 cpu s on a Cyber 74-16, even when 
only three branches were considered in the summation 
given by (9). []owever, as I2(TDS,H) is one order of 
magnitude smaller than I~(TDS,H), errors of some 10- 
20% in I2(TDS,I-I) will not affect the total error more 
than the differences found between the LWD and EX 
model for first order TDS (Table 5). We do not think it 
likely that this 10-20% will be exceeded by use of the 
LWD model for I2(TDS,H) on the basis of the 
following three arguments. (1) The larger part of 
12(TDS,H) is due to (acoustic) modes with small k; for 
a spherically scanned volume with radius r, the 
contribution of modes with k < r has been estimated to 
be about 80% (Reid, 1973). (2) The optic branches of 
naphthalene are reasonably flat (Fig. 1) and at 
k = 0.5b* still 66% of the acoustic character is retained 
(§ 6). (3) For I2(TDS,H) the percentage error due to 
neglect of the librational character of the acoustic 
modes will be smaller than for IF2(Str' k' a" k")l 2, as 
for the different combinations (a'k'),  (a"k") used 
during the integrations (9) and (1) the errors in the 
IF2(Sa'k'a"k")l 2 intensities may be different in 
magnitude and in sign, see (8) and (10). 

In addition to the above remarks on the LWD model, 
it is easy to show that second- and first-order TDS are 
analogous with respect to the fact that neglect of non- 
linearity of the frequency dispersion makes the cal- 
culated I(TDS,H) error too high. It is therefore reason- 
able to assume that the conclusions obtained in the next 
paragraph from the comparison of the different models 
for first-order TDS are also valid for the total TDS in 
good approximation. 

8. Higher-order TDS 

The total TDS error I(TDS,H) of (1) contains in 
addition to the first-order TDS error I~(TDS,H), the 
contributions I2(TDS,[]) etc. of higher-order TDS. 
From the TDS data given for NaF by Cochran (1969), 
it can be deduced that I(TDS,[])  is mainly due to first- 
order scattering, and that the contributions of third and 
higher order scattering can be neglected. For molecular 
crystals it has been found (Stevens, 1974) that 
I2(TDS,H) ~ 0.2I~(TDS,H) for high-order reflections 
(sin 0/2 ~_ 1.0 A-l).  For lower-order reflections, 
second-order TDS is even less important, because of 
the proportionality of first- and second-order TDS to S 2 
and S 4 respectively. 

In the program TDS (Kroon, 1977) the option of 
calculating intensity distributions I2(TDS; S -- [] - k) 

9. Influence of first-order TDS errors on structural 
parameters 

Least-squares refinements 

The influence of TDS errors on the structural param- 
eters was determined by least-squares refinement on 
structure amplitudes IFo(H)l calculated from the 
relation 

IFo(H)I 2= IFB(model;H)12[1 + al(H)]. (23) 

Fa(model;H ) is based on the naphthalene model of 
Table 2. a~(H) values for the EX, LW, LWF and LWD 
models are considered. The function minimized is 

Q(IFI)= ~. w(H)[IFo(H)I - IFc(H)I/K] 2. (24) 
H 



P. A. K R O O N  A N D  A A F J E  VOS 683 

Weights w(H) = 1 were taken as this gives minimal 
fluctuations in difference maps [p(r,obs) -p ( r , ca l c ) ]  at 
the end of the refinement (Wilson, 1976; strictly 
speaking w(H) = multiplicity of H should be taken). It 
should be noted, however, that in the present model 
calculations only ] of the reflections up to sin 0/2 = 1.2 
A -1 is considered (§ 7.1). For a ~ ( H ) =  0, the param- 
eter differences 

A t -- p t ( L S ) -  pi(model) (25) 

should be zero. This was verified to be correct. 
In all refinements anisotropic temperature factors 

were used and the full-matrix method was applied. For 
each C - H  unit the differences in corresponding C and 
H parameters were kept equal to those in the model 
parameters. The number of independent parameters 
was thus reduced to 46. For all four sets of IFo(H)l 
values full angle (f.a.), low order (1.o.) and high order 
(h.o.) refinements were performed, where 1.o. was 
chosen as sin 0/2 < 0.9 /k - l  and h.o. as sin 0/2 > 1.0 
A -~, resulting in about 400 reflections in each range. 
For the refinements the X - R A Y  system (1973) was 
used. 

accurate X-ray diffraction work at 100 K. Small 
changes of the same magnitude are found also by the 
LW, LWF and L W D  methods. 

(b) Thermal parameters and scale factor. The A~ x 
values in Tables 6 and 7 show that considerable errors 
occur in both the scale factor and the thermal param- 
eters if no TDS corrections are made, and that these 
errors depend on the reflection range used in the refine- 
ment. Neglect of TDS corrections clearly gives too 
small values for the thermal parameters.  For 
naphthalene at 100 K errors as large as 5 × 10 -3 A 2 are 
found, which is 10-15 times larger than the e.s.d.'s for 
accurate X-ray work. The fact that for each Uis the 
average and maximum shifts are only slightly different, 
indicates that the errors are in good approximation 
equal for all atoms and thus occur in the translation 
tensors of the molecules. Table 6 shows that the change 
in this tensor is strongly anisotropic. 

From Table 6 we see that first-order TDS cal- 
culations with the LW or L W F  model tend to over- 
correct the errors, but that good corrections can be 
made with the L W D  method. 

Results 

Table 6 summarizes the results of the refinements. It 
gives maximum and average parameter  changes and the 
indices R -= {[~ IFo(H) -- Fc(H)/KI2]/[~ IFo(H)I2I} ~/2 
before refinement, thus for Fc(H) = Fs(model,H).  
During the refinements R dropped from the values 
given in the table to less than 0 .6% in all cases. This 
indicates that the TDS contributions to the reflections 
are almost completely absorbed in the refined 
parameters.  

(a) Coordinates. The A~ x values in Table 6 show 
that the errors in the coordinates due to TDS are very 
small. The largest value for the h.o. refinement is 
7 x 10-4 A and is approximately equal to the e.s.d.'s for 

10. U s e  o f  T D S  c o r r e c t i o n s  for accurate  X - r a y  w o r k  

The above discussion shows that accurate X-ray 
diffraction studies of naphthalene-type crystals at 100 
K require TDS correction. This is especially true for 
accurate studies of bonding effects, in which high-order 
X-ray parameters or neutron diffraction parameters are 
used to calculate deformation maps including low-order 
reflections (Coppens, 1975). F rom Table 7 it is clear 
that high-order X-ray parameters are not transferable 
to the low-order region, if TDS corrections are 
neglected. It seems, however, that corrections at the 
LWD level are sufficient to eliminate the parameter 

Table 6. Results of  the least-squares refinements 

The table gives the average and maximum values of A defined by (25) for the atomic positions (10 -4 A) and for the diagonal elements of 
the thermal vibration tensors (in 10 -2 A2). AK is the shift in the scale factor in %, R is the one before refinement; R and K are defined in 
the text. 

f.a. = full angle, 1.o. = low order, h.o. = high order. 

LW LWF LWD EX 

f.a. I.o. h.o. f.a. 1.o. h.o. f.a. 1.o. h.o. f.a. 1.o. h.o. 

LArl ~ av. 3 3 3 8 8 5 2 2 1 2 2 4 
max. 5 5 5 9 12 9 3 3 2 4 3 7 

AU tav" 0-52 0.56 0.40 0.52 0.56 0.41 0.40 0.43 0.32 0.40 0.43 0.32 
- n~max. 0.54 0.57 0.41 0.54 0.57 0-41 0.41 0.43 0.32 0.42 0.43 0-33 

AU / av" 0.20 0.21 0.15 0.19 0.20 0.15 0.20 0.21 0.16 0.20 0-21 0.15 
- ZZ~max. 0.20 0.21 0.15 0.20 0.22 0.15 0.20 0.21 0.16 0.21 0.21 0.16 

AU ~av. 0.14 0.15 0.09 0.14 0.14 0.09 0.13 0.13 0.09 0.13 0.14 0.09 
- "/max. 0.15 0.15 0.09 0.15 0.16 0.10 0.13 0.14 0.09 0.13 0.14 0.10 

AK (%) 1.0 0.7 6.1 1.0 0.7 5.8 0.7 0.4 4.6 0.7 0.4 4.6 
R (%) 10.2 8.9 24.4 10.2 8.9 24.4 8.3 7.1 20.7 8.2 7.1 20.6 
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Table 7. Comparison of  the parameters obtained by 
low and high order least-squares refinement 

Given are I r(LS,l.o.) - r(LS,h.o.)l, U,(LS,I.o.) - U,(LS,h.o.), and 
K(LS,I.o.) -- K(LS,h.o.). Units as in Table 6. 

LW LWD EX 

1.4rl Iav" 5 2 3 
max. 7 3 6 

AU11 -0.16 -0.11 --0.11 
AUzz -0.06 -0.06 -0-06 
AU33 -0.06 -0.04 -0-04 
AK (%) --5.4 -4.1 --4.2 

errors due to first-order TDS and to make the errors in 
the individual reflections small (Table 5). 

Compared with the EX method, the L W D  method 
greatly reduces the computing time. Computing times 
on a Cyber 74-16 are 11 and 1 cpu s for EX and LWD 
respectively for the fixed scanned volume TDS cal- 
culations discussed above (for LW this time is 1 and for 
LWF 10). 

11. Combination with experimental methods 

The best way to reduce first-order and especially 
second-order TDS is to do the measurements at very 
low temperatures with a He cryostat. If TDS is reduced 
in that way, it may be hoped that theoretical inter- 
action models are adequate to eliminate the remaining 
small TDS influence by making corrections in LWD, or 
even in LW, approximation. The L W F  approximation 
is not considered further as it is no better than LW and 
requires much more computing time. Available com- 
puter programs will be modified so that first- and 
second-order TDS calculations can readily be done in 
LWD or in LW approximation for scanned volumes 
encountered in practice. 

We thank the referee for valuable comments concer- 
ning second-order TDS and eigenvector dispersion. The 
computations were done at the Computing Center of 
the University of Groningen. 

References 

AFANAS'EVA, G. K. (1968). Kristallografiya, 13, 1024- 
1027; Soviet Phys. Crystallogr. (1969), 13, 892-895. 

AFANAS'EVA, G., K., ALEKSANDROV, K. S. & 
KITAIGORODSKII, A. I. (1967). Phys. Status Solidi, 24, 
K61-K65. 

AFANAS'EVA, G. K. & MYASNIKOVA, R. i .  (1970). 
Kristallografiya, 15, 189-190; Soviet Phys. Crystallogr. 
(1971), 15, 156-157. 

ALEKSANDROV, K. S., BELIKOVA, G. S., RYZHENKOV, A. P., 
TESLENKO, V. R. & KITAIGORODSKII, A. I. (1963). 
Kristallografiya, 8, 221-224; Soviet Phys. Crystallogr. 
(1964), 8, 164-166. 

BONADEO, H., MARZOCCHI, M. P., CASTELLUCCHI, E. & 
CALIFANO, S. (1972). J. Chem. Phys. 57, 4299-4303. 

BORN, M. & HUANG, K. (1968). Dynamical Theory of 
Crystal Lattices. Oxford: Clarendon Press. 

CHANTRY, G. W., GEBBIE, H. A., LASSIER, B. • WYLLIE, G. 
(1967). Nature (London), 214, 163-165. 

COCHRAN, W. (1963). Rep. Prog. Phys. 26, 1-45. 
COCHRAN, W. (1969). Acta Cryst. A25, 95-101. 
COPPENS, P. (1975). International Review of Science: Phys. 

Chem. Series 2, Vol. 11, pp. 21-56. 
CRUICKSHANK, D. W. J. (1957). Acta Cryst. 10, 504-508. 
FILIPPINI, G., GRAMACCIOLI, C. M., SIMONETFA, M. & 

SUFFRITrl, G. B. (1973). J. Chem. Phys. 59, 5088-5101. 
GRAMACCIOLI, C. M., SIMONETFA, M. & SUFFRITrI, G. B. 

(1973). Chem. Phys. Lett. 20, 23-28. 
HARADA, I. & SHIMANOUCHI, T. (1966). J. Chem. Phys. 44, 

2016-2028. 
HARADA, I. & SHIMANOUCHI, T. (1967). J. Chem. Phys. 46, 

2708-2714. 
HELMHOLOT, R. B. (1975). Thesis. Univ. of Groningen. 
HELMHOLDT, R. B. & VOS, A. (1977). Acta Cryst. A33, 38- 

45. 
HESELTINE, J. C. W., ELLIOTr, D. W. & WILSON, O. B. JR 

(1964). J. Chem. Phys. 40, 2584-2587. 
HoI'PE, W. (1964). Adv. Struct. Res. Diffr. Methods, 1, 90- 

166. 
HUNTINGTON, H. B., GANGOLI, S. G. & MILLS, J. L. (1969). 

J. Chem. Phys. 50, 3844-3849. 
ITO, M., SUZUKI, M. & YOKOYAMA, T. (1968). In Exitons, 

Magnons and Phonons in Molecular Crystals, edited by 
A. B. ZAHLAN. Cambridge: University Press. 

JAMES, R. W. (1965). The Optical Principles of the 
Diffraction of X-rays. London: Bell. 

JENNINGS, L. D. (1970). Acta Cryst. A26, 613-622. 
KROON, P. A. (1977). Thesis. Univ. of Groningen. 
KROON, P. A. & VOS, A. (1978). Acta Cryst. A34, 823-824. 
MARADUDIN, A. A., MONTROLL, E. W. & WEISS, G. H. 

(1963). Theory of Lattice Dynamics in the Harmonic 
Approximation. Solid State Phys. suppl. 3. 

MIRSKAYA, K. V., KOZLOVA, I. E. & BEREZNITSKAYA, V. F. 
(1974). Phys. Status Solidi B, 62, 291-294. 

PAWLEY, G. S. (1967). Phys. Status Solidi, 20, 347-360. 
PAWLEY, G. S. (1972). Phys. Status Solidi B, 49, 475-488. 
PAWLEY, G. S. & CYVlN, S. J. (1970). J. Chem. Phys. 52, 

4073-4077. 
REID, J. S. (1973). Acta Cryst. A29, 248-251. 
SCHERrSGER, C. (1973a). Acta Cryst. A29, 283-290. 
SCHERINGER, C. (1973b). Acta Cryst. A29, 554-570. 
STEVENS, E. D. (1974). Acta Cryst. A20, 184-189. 
TADDEI, G., BONADEO, H., MARZOCCHI, i .  P. & CALIFANO, 

S. (1973). J. Chem. Phys. 58, 966-978. 
TESLENKO, V. F. (1967). Kristallografiya, 12, 1082-1084; 

Soviet Phys. Crystallogr. (1968), 12, 946-948. 
WALKER, C. B. & CHIPMAN, n.  R. (1970). Acta Cryst. A26, 

447-455. 
WILLIAMS, D. E. (1966). J. Chem. Phys. 45, 3770-3778. 
WILLIAMS, D. E. (1967). J. Chem. Phys. 47, 4680-4684. 
WILLIAMS, D. E. (1970). Trans. Am. Crystallogr. Assoc. 6, 

21-33. 
WILLIAMS, D. E. (1974). Acta Cryst. A30, 71-77. 
WILLIS, S. T. M. (1969). Acta Cryst. A25, 277-300. 
WILSON, A. J. C. (1976). Acta Cryst. A32, 781-783. 
J(-RA Y system (1973). Dutch version. Technical Report TR- 

192 of the Computer Science Centre, Univ. of Maryland. 
June, 1972. 


